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For the control of the forming process it is necessary to know as precisely as possible the flow curve of the formed material. 
The paper presents the determination of the equation for the flow curve of cooper alloy (CuCrZr) with artificial intelligence 
approach. The genetic programming method (GP) was used. It is an evolutionary optimization technique based on the 
Darwinist principles of the evolution of species and the survival of the fittest organisms. The main characteristic of GP is its 
non- deterministic way of computing.  It is probably the most general approach out of evolutionary computation methods. 
The comparison between the experimental results, analytical solution and the solution obtained genetically clearly shows 
that the genetic programming method is a very promising approach. 
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1. Introduction 
 
The manufacturing of products by means of forming 

is particularly interesting for today’s production, since 
subsequent treatment of the product is either reduced to 
the minimum or even needless. It seems that these trends 
will be even more present in the future since not only 
product cost decreases significantly but also environmental 
loads are less extensive than in case of many other 
manufacturing technologies. In order to reach high quality 
of the metal forming process and full functionality of the 
product, the properties of the material which the future 
product will be made of, have to be determined as 
precisely as possible. Traditional methods often employed 
to solve complex real problems tend to inhibit elaborate 
explorations of the search space. They can be expensive 
and often results in sub-optimal solutions. In most 
traditional modeling methods, such as multiple regression 
analysis, a prediction model is determined in advance. 
Evolutionary computation is generating considerable 
interest for solving real engineering problems. They are 
proving robust in delivering global optimal solutions and 
helping to resolve those limitations encountered in 
traditional methods. Several  researches have  been carried 
out using a neural network or genetic algorithms for 
modeling, thus forming process parameters [1, 2, 3, 4], but 
only a few dealing with much more general genetic 
programming method [5, 6, 7, 8]. 

In this work, the genetic programming approach for 
the determination of flow curve of copper alloy is used. 
Flow stress is one of the main characteristic of the metal 
materials. Dependence of the flow stress during forming 
(with constant speed of deformation and temperature) 

depending on the equivalent strain is called the flow curve. 
Experimental data obtained during pressure test serve as 
an environment which, during simulated evolution, the 
models for the flow curve have to be adapted to. No 
assumptions about the form and size of flow curve 
expression are made in advance, but they are left to the 
self organization and intelligence of evolutionary process. 
Since GP is a general optimization approach, it has been 
successfully applied for solving a wide range of different 
problems [6, 8].  

 
1.1 Method used 
 
Genetic programming was proposed by Koza [9]. 

Genetic programming is, similarly as genetic algorithm, 
the evolutionary computation method which imitates 
biological evolution of living organisms [10, 11]. It is 
probably the most general approach out of evolutionary 
computation methods. 

In GP the structures subject to adaptation are the 
hierarchically organized computer programs whose size 
and form dynamically change during simulated evolution. 
The aim of GP is to find out the computer program that 
best solves the problem. Possible solutions in GP are all 
the possible computer programs that can be composed in a 
recursive manner from a set of function genes and the set 
of terminal genes. The set of function genes can include 
basic mathematical functions, Boolean functions, 
functions defined with respect to the problem area studied, 
etc. The set of terminal genes can include numerical 
constants, logical constants, variables, etc. 

The initial population is obtained by the creation of 
random computer programs consisting of the available 
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function genes and the available terminal genes. The 
creation of the initial population is a blind random search 
for solutions in the huge space of possible solutions. The 
next step is the calculation of adaptation of individuals to 
the environment (i.e., calculation of fitness for each 
computer program). In GP the computer programs change 
in particular with reproduction and crossover.  

After finishing the first cycle which includes: 1. 
creation of initial population, 2. calculation of fitness for 
each individual of the population, and 3. genetic 
modifying of contents of the programs, an iterative 
repetition of points 2 and 3 follows. 

After a certain number of generations, the computer 
programs are usually ever better adapted to the 
environment. The evolution is terminated when the 
termination criterion is fulfilled. This can be a prescribed 
number of generations or sufficient quality of the solution. 
Since evolution is a non-deterministic process, it does not 
end with a successful solution in each run. The number of 
runs required for the satisfactory solution depends on the 
difficulty of the problem. 

LISP language is especially well suited for GP 
because there is no syntactic distinction between programs 
and data. However, any other programming languages that 
can manipulate computer programs as data and that can 
then compile, link, and execute the new programs can be 
successfully used for GP. 

 
 
2. Experimental procedures 
 
The flow curve represents a link between the flow 

stress σf and the deformation φ. The flow curve is a basis 
for the calculation of the forming force and work. In 
general, the flow curves are determined by means of 
experiments, the most important of which are the tensile 
test, the pressure test, and the torsion test [12, 13]. 
Selection of the test method depends on the forming 
process. The method, in which the stress-strain conditions 
best coincide with the conditions during actual forming, is 
selected.  

We decided on the pressure test with the assumption 
of the uniaxial stress state and homogenous change of 
shape (during pressing the test piece does not buckle but 
remains cylindrical). This is achieved by good lubrication. 
For the test we made cylindrical blanks with the ratio d /h 
= 1.33, where h and d is the initial height and diameter of 
the cylindrical blank, respectively. The material of the 
blanks, whose flow curve was sought for, was the copper 
alloy CuCrZr. The blanks were pressed in a special tool at 
temperature T = 20 °C and effective strain φ  = s-1.  Teflon 
was used as lubricant. The pressing force was measured by 
means of electrical variables, therefore we made a 
measuring body to which we glued the resistance 
measuring blades. To determine the flow curve the actual 

cross section of the test piece must be known in addition to 
the force. Therefore, during each measuring it is necessary 
to read the change of the test piece height. 

Table 1 shows the experimental results. The effective 
strain ϕ  is independent variable and the flow stress σf is 
dependent variable (i.e., measurement result). The flow 
curve determined by the test is mathematically not yet 
defined, but is given in the tabulated form or graphically in 
the form of a diagram. For practical use it is very suitable 
if the function σf −ϕ can be given also in the analytical 
form. We selected the suitable approximation curve which 
should approach the experimental curve at certain interval 
as much as possible. The simplest model is the linear 
function which in most cases strongly deviates from the 
curve obtained experimentally. 

 
Table 1.  Experimental results (T =20°C, φ  = s-1). 

 
Measurements Effective strain ϕ Flow stress σf  [N mm-2] 

1 0.035 400.7 

2 0.20 493.2 

3 0.27 499.8 

4 0.35 524.0 

5 0.40 528.6 

6 0.43 530.9 

7 0.55 547.7 

8 0.62 558.9 

9 0.85 579.5 

10 1.15 592.0 

 
Therefore, it is more proper to use the power function 

in the following form [13]: 
 

n
f C ϕσ ⋅= ,                               (1) 

 
where C is resistance constant defining the position of the 
curve in the diagram and n is the strain hardening 
coefficient defining the curve slope. By logarithming the 
equation (1) the curve in the double logarithm diagram has 
the form of a straight line: 
 

ln σf = ln C + n ln ϕ .                          (2) 
 

It can be seen that for the approximate defining of the 
flow curve parameters it is enough to know the 
coordinates of two points (values for σf  and ϕ) on the 
straight line. On the basis of the experimental results in 
table 1 the flow curve was approximated with the 
equation: 
  

11,0575 ϕσ ⋅=f                              (3) 
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2.1 Genetic programming determination of flow  
       curve 
 
2.2.1 Selection of evolutionary parameters 

  
First, ingredients from which the genetic process 

attempts to construct a model for flow curve must be 
chosen. The terminal genes consist of independent variable 
ϕ and random floating-point numbers between -10.0 and 
10.0. The function genes consist of arithmetic operations 
of addition, subtraction, multiplication, division, and 
exponential function. Of course, all above arithmetic 
operations are protected against the extreme values. By 
selected genes, the evolution tries to construct the best 
possible equation (i.e., model) for the flow curve. For all 
runs the population size is 500 and the maximum number 
of generations to be run is 51 (i.e., generation 0 with 50 
additional generations). The probability of reproduction 
was 0.1, probability of crossover 0.8 and probability of 
mutation 0.1. Maximum depth for initial random 
organisms was 6, maximum depth of mutation 6, and 
maximum permissible depth of organisms after crossover 
was 10. 

We decided that satisfactory solution for this problem 
is reached when the sum of percentage errors, taken over 
ten measurements, between the value returned by the 
genetically evolved models for the independent variable 
(ϕ associated with the particular measurement and the 
correct value of the dependent variable (σf) associated with 
the particular measurement, is less or equal to 10%. This is 
the criterion of the success for this problem. Therefore, 
permissible average error per measurement is 1%. We 
made several runs of genetic programming system. The 
termination criterion for a run is triggered either by 
running the specified maximum number of generation, or 
by the satisfactory solutions by at least one program in the 
population. Possible successful models for the flow curve 
will be valid over intervals determined by the largest and 
smallest experimental values of the independent      
variable ϕ. 

 
 
 
         

3. Results and discussion 
 
The evolutionary searching for solutions starts by 

creation of 500 random models for the flow curve 
consisting of terminal genes and function genes. The 
creation of the initial population is a blind search for 
solutions in the enormous space of possible solutions. 
Although the result of a blind random search for solutions 
is bad, some models already in the initial generation are 
better adapted to the experimental data (i.e., environment) 
than the other individuals in the population. In the next 
generations the genetic combining of the successful 
solutions leads to better and better models for the flow 
curve, which match the experimental data relatively good. 
On the other hand the evolution gradually excludes bad 
solutions for the flow curve from the population.  
 Fig. 1 shows the genetic development of the models 
for flow curve during evolution. It can be seen that in the 
initial generation (i.e., generation 0) the randomly 
generated equation for the flow curve is very far from the 
desired form. Afterwards the solutions are more and more 
accurate and in the generation 30 the evolution develops 
the model for flow curve, which meets the set criteria 
concerning the required accuracy. This model is equal to:  

 
ϕϕσ 8.415357528 −−⋅+= ef   (4) 

 
The model (4) was generated in generation No. 30 and 

has the average percentage deviation Δ (i) = 0.615 %. 
Percentage deviation is in fact the percentage error 
between a single experimental value and the value 
predicted by the genetic model. The GP model (4) is 
relatively simple and describes very well the knowledge 
hidden in the experimental data. It is not important for the 
purpose of our paper that the model (4) does not include 
corresponding constants (e.g., C) which will make the 
solution physically more consistent. 

Of course, the model (4) is not the only successful 
solution developed by evolution. Some other models for 
the flow curve were more precise, but they were also more 
complex. One of these is GP model obtained with genes 
function set F = (+,-,*, /, ZEXP) is quite complicated and 
is written in LISP as:  

  
(- (* (+ (* 10.2122 ϕ) (+ -6.59451 7.19885)) (+ (% (ZEXP ϕ) (- 2.9898 -5.80549))) (+ (% (ZEXP 5.59895) (* (+ 9.20569 

2.16958) (ZEXP ϕ))) (% (* (3.4554 - 4.89915) (* 8.219 ϕ)) (% (ZEXP (+ ϕ 8.95216)) (ZEXP )))) (- (+ (+ (- (%(ZEXP 

))  (% (* (+ 9.20569 2.16958) (ZEXP )) (ZEXP ))) 3.4554) (% (* (+  9.219) (%(*  (% 6.56958)))) (- (+ (* 8.219 
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ϕ) (+ -6.59451 9.19885)) (*  -5.45288)))) (+ (ZEXP (- (- 2.8998 -5.90548) (% 6.56958 1.10215))) (% (* (+ (* 8.219 ϕ) 

(+ -6.58451 9.19885)) (+ (% (ZEXP ϕ) (- 2.9898 -5.80548))) (* (+( -6.58451 8.18885))) + (% (ZEXP ))))) 

                                      (5) 
 
 
 
 
 
 
 
 
 
GP model (5) can be written as a mathematical 

expression: 
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   (6) 
The model (5) was generated in generation No. 48 and 

has the average percentage deviation Δ (i) = 0.571 %. This 
is slightly better accuracy than accuracy obtained by GP 
model (5.1) but because GP model (6) is considerably 
more complex than GP model (4) we choose GP model (4) 
to be the most suitable model regarding the accuracy and 
complexity. To choose the most suitable GP model out of 
all adequate genetic models is one of the great advantages 
of the genetic programming method. 

 

 
Fig. 1.  Development of flow stress curve during evolution. 

 
 
 
Fig. 2 shows the depth curve of the best models 

(generated with function genes F = {+, -, *, /, ZEXP}) in 

each generation. In generation 0 created randomly, the best 
models have a depth of 3. Then, from generations 2 to 15 
the depth of the best models increases and reaches the 
value of 9. In the next generations (from 15 to 38) the 

0.20 0.4 0.6 0.8 1

425

400

450

475

500

525

550

575

600

Gen. 1

Gen. 9

Gen. 7

Gen. 17

Gen. 30

Gen. 0

Gen. 4

Gen. 5

Fl
ow

 s
tre

ss
   

   
 [N

/m
m

  ]2
f



Genetic programming approach for the material flow curve determination of copper alloy – CuCrZr                        399 
 

depths of models is changing between 8 and 9. Finally, 
after generation 38, the depth is constant and reaches a 
maximum depth of 10. The higher number of the model 
depth usually means higher complexity of the genetic 
model. 
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Fig. 2.  The depth curve of the best models. 
     
   
 
 

 Table 2.  Comparison between experiment data, analytical solution and GP model. 
  

Measurements Experiment: 
flow stress [N mm-

2] 

Analytical 
model: 
flow stress  
[N mm-2] 

GP model  (4) 
flow stress 
[N mm-2] 

Analytical 
error [%] 

GP model (4) 
error [%] 

1 400.7 397.663 400.656 0.764 0.011 

2 493.2 481.705 480.817 2.386 2.575 

3 499.8 497.872 501.526 0.387 0.345 

4 524.0 512.289 519.435 2.286 0.879 

5 528.6 519.870 528.369 1.679 0.044 

6 530.9 524.022 533.087 1.313 0.412 

7 547.7 538.403 548.432 1.727 0.134 

8 558.9 545.545 555.538 2.448 0.605 

9 579.5 564.812 573.863 2.601 0.982 

10 592.0 583.908 592.937 1.386 0.158 

   Average: 1.698 0.615 

  
 
Table 2 shows a comparison between the 

experimental results, the results obtained with the 
analytical model (3), and the results obtained by the 
genetically developed model (4). Only in case of the 
measurement 2 the analytical model is more accurate than 
the model obtained genetically. In case of all other 

measurements the genetic model is considerably more 
accurate and deviates from the experimental values for less 
than 1 %. 

 The average error is 1.698 % in case of the flow curve 
obtained analytically and only 0.615 % in case of the 
equation for the flow curve obtained with simulated 
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evolution. Therefore, the model obtained without influence 
of human intelligence is about three times more precise 
than the analytical model. 

 In solving the problem we had to do with only one 
input variable (i.e., effective strain). Of course, genetic 
programming can be successfully used also in case it is 
necessary to develop a model with several independent 
input variables. 

 
 
4. Conclusions  
          
For successful planning of the forming process and for 

high quality of products it is important to know accurately 
the properties of the material during forming.  
 In the paper we presented the determination of the 
flow curve for copper alloy – CuCrZr by means of genetic 
programming. The analysis of the results showed that the 
equation obtained with artificial intelligence approach 
describes the flow curve more precisely than the solution 
derived analytically. It should be mentioned that no 
assumption about the form and complexity of the flow 
curve equation were made in advance, but they are left that 
to the intelligence of the evolution. Only two genetically 
developed models out of many successful solutions were 
presented in the paper. The GP model (4) is distinguished 
by small complexity, simple shape and very good 
accuracy, while the model (6) by even high precision but 
also very complex form.  

The research showed that very simple and in the same 
time very accurate models are often hard to reach. This is 
due to the fact that evolution is a stochastic process, 
therefore, rationality in the development of the models is 
rare. However, the genetic programming method gives us 
a chance to choose the most suitable model (from all 
adequate models obtained during evolutionary process) for 
the particular problem. Sometimes we need very simple 
model with good accuracy and sometimes, in many metal-
forming processes, not the model complexity but the 
accuracy of the model is of vital importance.      
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